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LARGE-AMPLITUDE SOLITARY INTERNAL WAVES IN A TWO-LAYER FLUID 

N. V. Gavrilov UDC 532.539 

The theoretical analysis of solitary waves at an interface separating two fluids of 
different densities is usually based on the Korteweg-de Vries equation [1-3], which has 
been derived not only on the standard assumption used in the theory of long waves, that 
the ratio of the fluid depth to the wavelength is small, but also with the additional as- 
sumption of relative smallness of the amplitude in comparison with the depth of the fluid. 
Consequently, the Korteweg-de Vries equation describes only small-amplitude solitary waves. 
Some experimental information on the range of validity of such modes may be found in [4]. 
A theoretical analysis of internal solitary waves without any constraints on their amplitude 
has been carried out in [5], where layers that move relative to one another are investigated 
in addition to layers that are at rest in the unperturbed state. Better experimental cor- 
roboration of the results of [5] has been obtained [4] for the velocity of wave propagation. 
The present article gives experimental data on the profiles of internal solitary waves, 
which are also in very good agreement with the model [5]. 

The waves were generated at an interface separating two layers of immiscible fluids 
of different densities, which were bounded below by a horizontal bottom and above by an 
impermeable horizontal cover plate. The principal notation and diagrams of the experimental 
arrangements are shown in Fig. la, b. Here H is the distance between the bottom and the 
cover plate, h0 is the depth of the ~nperturbed lower layer, h is the depth of the perturbed 
lower layer, q = h - h 0 is the deviation of the interface from the equilibrium position, 
qm is the amplitude, v is the velocity of propagation of the solitary waves, and P0, P < P0, 
u 0, and u are the densities and velocities of the lower and upper layers, respectively. 
A fixed xy rectangular coordinate system is used. 

A rectangular duct with a working section of length 250 cm, width 18 cm, and height 
6 cm (Fig. la) was used, as in [4], for the experimental creation of solitary waves in the 
case of fluids moving in the unperturbed state. The lower fluid could move with a velocity 
u 0 distributed uniformly along the vertical in the initial cross section, whereas only a 
slight circulatory motion took place in the upper layer in connection with friction at the 
interface. The working fluids were a dilute solution of salt (NaCl) in distilled water 
(P0 = 1 g/cm s) and kerosene (p = 0.8 g/cm3). The waves were generated by a barrier in the 
form of a vertical plate set up at the exit from the duct and projecting above the bottom 
to a height b I. Once a steady flow regime with depth h 0 of the lower fluid had been estab- 
lished, the barrier was raised smoothly to a height b 2 (for the generation of hummock-type 
waves) or was lowered (for the generation of crater-type waves) and was then brought back 
to its original position. 
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Fig. i 

The solitary waves in the case of layers initially at rest were investigated on a dif- 
ferent experimental arrangement (Fig. ib). It represented a duct of square cross section 
6 • 6 cm and length 330 cm, which was divided into two parts by an impermeable partition. 
The depths of the lower fluid differed to the left and to the right of the partition. When 
the partition was quickly raised, solitary waves propagated in both directions away from 
it. If h 0 ~ }[/2, a hummock-type wave moved in the positive x direction, and if h 0 e H/2, 
(Fig. ib), a crater-type wave moved in the same direction (the exact expression for the 
height h 0 at which the type of wave changes is given in [4]). The amplitude of the generated 
wave could be controlled by varying the speed of the partition and the initial level differ- 
ence Ah at the partition. 

The waves were measured by two electrical conductivity sensors similar to those used 
in [6], which were placed at distances of 75 and i00 cm from the generator. At this distance, 
the solitary wave had time to form completely, and undesirable ripple created by the motion 
of the wave generator died out. The propagation velocity v was measured according to the 
time for the crest (or trough) of the wave to traverse a distance of 25 cm. Repeated measure- 
ments under the same conditions showed that the random errors of estimation of the propaga- 
tion velocity and amplitudes of the waves had coefficients of variation not greater than 
1%. 

The objective of the experiments was to compare calculated (according to the model 
of [5]) and experimental data on the profile and velocity of solitary waves. The analytical 
and experimental conditions were matched with respect to all the parameters of the problem 
except the viscosities of the fluids and the surface tension at the interface. Almost all 
the theoretical studies of solitary waves, including [5], have been carried out within the 
framework of the ideal-fluid model and without regard for surface tension. The kinematic 
viscosity coefficients in the experiments were 0.0108 cmm/sec for water and 0.0162 cmm/sec 
for kerosene, and the coefficient of surface tension was 34 dyn/cm. 

Surface tension has scarcely any effect on long solitary waves [6], but it is useful 
in a number of respects. First, it enables us to obtain an abrupt change in the density 
and thus to match the experimental conditions ideally with the mathematical models. Second, 
it effectively suppresses the Kelvin-Helmholtz instability [7] (under the actual experimental 
conditons up to a velocity difference of about 19 cm/sec between the layers) and makes it 
possible to carry out investigations with layers in relative motion. Unwanted ripple created 
by the motion of the wave generator is also suppressed. 

The viscosity of the fluids causes the amplitude, profile, and velocity of the waves 
to vary with distance from the source, i.e., they are nonstationary in general. However, 
the following quasistationary approach is applicable for liquids having a comparatively 
low viscosity (e.g., those used in the experiments) in the first approximation over a cer- 
tain finite time interval. If the law governing the time variation of a particular param- 
eter of the solitary wave is specified from the experimental results, its other parameters 
are predicted by the theory within the framework of the ideal-fluid model. Ordinarily, 
and this includes [5], the wave amplitude is taken as the free parameter. It was thus speci- 
fied from the experiments. The mean values of the amplitude and the propagation velocity 
in the above-indicated interval between two sensors were used in comparison with the results 
of the calculations. 

The results of an experimental confirmation of the model in [5] with respect to the 
wave velocity are given in [4]. Very good agreement with the theory is observed (within 
the limits of the previously indicated measurement error), whereas models based on an expan- 
sion in two small parameters give systematically overestimated values of v (as much as 10% 
too high). The experimental information on this problem has been augmented in the present 
study (in particular, waves propagating oppositely to the direction of the velocity u 0 are 
investigated); similarly good agreement is obtained with the model in [5]. 
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Figures 2-4 show typical results of the experimental testing of the model in [5] for 
the solitary wave profiles. The following are obtained in [5] for hummock-type waves: 

4 (~ - y~)~ (y~ - y) (y~ - ~,) 

- -  ~ _ _  6 ~ t h ~ k x  ' 

(z) 

(2) 

where y = h/H, x = x/H, and Yi (i = 2, .... 6), 6, and k are dimensionless constants deter- 
mined by the values of the parameters of the problem H, h0, qm, P0, P, and u 0 [5]. Analogous 
expressions apply to crater-type waves, differing only in the significance of the constants 
involved in them. We note that Eq. (2) is an approximate solution of (i) obtained in [5] 
by replacing the quantity (Y5 - Y) with a certain average constant. It was deemed important 
to check the errors incurred by such a replacement under real conditions. It was found 
that the discrepancy between the exact equation (I) and approximate solution (2) is practi- 
cally indistinguishable in the scale of the graphs. The curves in Figs. 2-4 were plotted 
by the numerical solution of Eq. (i) on a computer. 

Figure 2 gives the data for "hummock" waves with u 0 = u = 0. Curve 1 and the dark 
points are plotted for Y0 = h0/H = 0.315; curve 2 and the light points are plotted for Y0 = 
0.35. The experimentally determined wave velocity was found to be identical in both cases: 
= v/~0.235 (g is the acceleration of gravity). According to the calculations, v = 

0.235 for curve i, and v = 0.234 for curve 2. 
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Figure 3 illustrates the evolution of a crater-type solitary wave for u 0 = u = 0, Y0 = 
0.707. The dark and light points and the corresponding calculated curves 1 and 2 refer 
to the same wave at distances from the partition x/H = 12.5 and 16.7. Viscous damping caused 
the amplitude to decay in the experiments. The calculated curves were varied accordingly, 
and the experimental values of the amplitude were used in the calculations. The velocity 
v = 0.233 in the calculations and in the experiments between the two indicated cross sections. 

Figure 4 shows the analogous evolution of a hummock-type solitary wave in the case 
of layers moving relative to one another for u0//g--H= 0.0835, u = 0, Y0 = 0.442. The distance 
from the barrier x/H = -13.3 for curve 1 and the dark points, and x/H = -17.5 for curve 
2 and the light points. In this interval, v = -0.190 in the calculations and in the experi- 
ments. 

It is evident from Figs. 2-4 that the model of [5] is in adequate agreement with the 
experimental data when the viscosity of the fluids is taken into account on the basis of 
the above-formulated quasistationary approach. The conditions of a "rigid cover" on the 
upper boundary of the layers are used in the model of [5] to arrive at reasonably simple 
final results. However, this model also gives sufficiently accurate results in the presence 
of a free surface if the depth of the upper layer is large in comparison with the wave ampli- 
tude; this fact is illustrated in Fig. 5, which shows the experimental data obtained for 
H = 4.75 cm, u 0 = u = 0, Y0 = 0.737. Curve 1 corresponds to the model of [2], curve 2 to 
the model of [5], and curve 3 to the model of [8]. We see that the model of [5] affords 
good agreement with the experimental data when the depth of the upper layer is only twice 
the value of the wave amplitude, whereas the model of [2] and [8] deviate strongly from 
the experimental; The wave velocity v in the given example is equal to 0.219 in the experi- 
ments, and its model values are 0.236 [2], 0.232 [5], and 0.225 [8]. 

The amplitude of the solitary waves at a density discontinuity cannot be too great 
(e.g., as a result of the Kelvin-Helmholtz instability). Even in the case of layers at 
rest in the unperturbed state, solitary-wave transmission can be accompanied by such a large 
velocity shear that surface tension is not adequate to suppress the indicated instability. 
This kind of situation is illustrated in Fig. 6, which shows an unstable internal solitary 
wave with a crater profile, which is traveling to the right. The instability that develops 
in the vicinity of the maximum velocity shear exerts a strong influence on the behavior 
of the wave as a whole. In particular, its leading edge can collapse. This wave dissipates 
rapidly. 

In conclusion, we estimate the wave amplitude at which Kelvin-Helmholtz instability 
sets in. It can be shown on the basis of the laws of conservation of mass flow in each 
layer that the velocity shear between the layers in the cross section of maximum deviation 
of the interface from its equilibrium position is 

Au, ~- 
aH~ 

( H - -  hin ) h m' 

~tgh m H - -  h 

V ( ~ z - ~ h ~ ) .  , 

where a = h 0 - hm, hm is the depth of the lower fluid in this cross section, and the equation 
for v is taken from [4]. We see that the limiting wave amplitude for the onset of instabil- 
ity is 

a~ -~ Au~ V h m ( I t  - -  h,O(H - -  ~h~)/~t~It ~. 

As mentioned, surface tension restricts the growth of the instability to a velocity differ- 
ence AUc = 19 cm/sec. The maximum possible value of the wave amplitude in this case is ac = 
1.58 cm. Estimates of the parameters of the wave shown in Fig. 6 gives a = 1.8 cm and Au = 
23 cm/sec, which exceed the critical values. 

The author is grateful to L. V. Ovsyannikov and V. I. Bukreev for furnishing the experi- 
mental data on their own initiative and for immeasurable assistance in the work, and also 
to O. A. Gavrilova for assistance in the numerical calculations on the computer. 
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EVOLUTION OF THREE-DIMENSIONAL GRAVITATIONALLY WARPED WAVES 

DURING THE MOVEMENT OF A PRESSURE ZONE OF VARIABLE INTENSITY 

A. E. Bukatov and A. A. Yaroshenko UDC 532.593:550.3 

Three-dimensional, unestablished, gravitationally warped waves arising due to 
the motion of a harmonically time-varying pressure zone over a solid, thin 
plate floating on the surface of a homogeneous liquid of finite depth have been 
studied in the linear formulation. In the absence of a plate, three-dimensional 
waves are generated by the movement of a region of periodic perturbations, where 
established waves have been studied in [i, 2], and unestablished waves have been 
investigated in [3-5]. The evolution of three-dimensional, gravitationally 
warped waves formed during the motion of a constant load over a plate has been 
considered in [6]. 

i. We will consider a homogeneous, ideal, incompressible liquid of finite depth H 
covered by a thin, elastic plate. Beginning from time t = 0, a force of the following form 
acts on the surface of the plate: 

p = po/(Xl,: y) exp (icrt), x l  = x -F v t ,  v = const. ( 1 . 1 )  

We w i l l  i n v e s t i g a t e  t h e  e v o l u t i o n  o f  e x c i t e d  wave m o t i o n  assuming  t h a t  t h e  l i q u i d  i s  u n p e r -  
t u r b e d  up u n t i l  t h e  t ime  when t h e  f o r c e  ( 1 . 1 )  a c t s  and t h a t  t h e  i n t e r f a c e  be tween t h e  p l a t e  
and t h e  l i q u i d  ( t h e  f l e x u r e  o f  t h e  p l a t e )  5 i s  h o r i z o n t a l .  

C o n s i d e r i n g  t h e  m o t i o n  o f  t h e  l i q u i d  t o  be t h a t  o f  a p o t e n t i a l  and t h e  v e l o c i t y  o f  
t h e  p a r t i c l e s  o f  t h e  l i q u i d  and t h e  e l e v a t i o n  o f  t h e  l i q u i d - p l a t e  i n t e r f a c e  t o  be s m a l l ,  
we w i l l  f i n d  in  t h e  c o o r d i n a t e  s y s t e m  Xl,  y ,  which  i s  c o n n e c t e d  t o  a p r e s s u r e  zone  moving 
w i t h  a v e l o c i t y  v ,  t h e  v e l o c i t y  p o t e n t i a l  ~0 t h r o u g h  t h e  L a p l a c e  e q u a t i o n  

A~ = 0, --H<z<0, --oo <x< oo,: "oo <y< oo (1.2) 

with the following boundary and initial conditions 

" (z  = 0),i Dxv4~ + • + ~ + (q~t + vq~x) + ----- pg (1 .3)  
~ = 0 (z = - -H) , :  ~(x,  y ,  z,  O) = ~ (x ,  y ,  O) = 0,, 

D Pl h Eh 3 V4  : 0 a Oa Oa 
D l = - ~ , :  •  D = i 2 0 _ , 2 ) , ~  ax4 +2az--~@~+~ ,: 

02 02 02 
F = T t  2 + 2v 0 ~ +  v 2 az---~,~ 
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